Multi-Scaled Socio-Ecology of the Everglades FCE III Conceptual Framework

FCE III LTER Goals:
Water : How do water management decisions interact with climate change to determine freshwater distribution?
(2) Carbon: How does the balance of fresh and marine water supplies regulate C uptake, storage, and fluxes by influencing water residence time, nutrient availability, and salinity?

(3)
Legacies: How does historic variability in the relative supply of fresh and marine water modify ecosystem sensitivity to further change?
(4) Scenarios: What are alternative socio-ecological futures for South Florida under contrasting climate change and water management scenarios?

Party crashers: displaced marsh consumers regulate a prey subsidy to an estuarine consumer

Ross Boucek \& Jennifer Rehage
Florida International University rbouc003@fiu.edu

Pulsed resource subsidies

- Resource pulse Instantaneous resource increase (Holt 2008)
- Subsidy

Pulses across ecosystem boundaries
(Anderson et al. 2008)

Time Yang et al. 2008

Bird guano

Seaweed deposits on beaches

Pulsed resource subsidies

Subsidies can fuel almost all biological activity within recipient ecosystems (Poliseat. 2004; Spller 2010)

Information gap

What regulates the flow of resources from one system to another?

Consumers from donor communities important

- Deplete resources locally
- Nothing to transfer (Epichan et al. 2010)
- Track resources across boundaries
- Compete with recipient consumers

In the Pacific Northwest

Salmon migrate up river to spawn Subsidizing upstream communities

Ocean

Sea lions Track Salmon Up River

Ocean

Sealions reduce salmon subsidies by 65\%

Leading to Aggressive Management

Everglades Ecotone: Wet season

Everglades Ecotone: Wet season

Marsh water level (SH1; 2005-2010)

Everglades Ecotone: Wet season

Everglades Ecotone: Dry Season

Research questions

(1) Does marsh drying push freshwater prey into the estuary?
(2) How do consumers respond to the pulse?
(3) Are freshwater consumers reducing marsh subsidies for estuarine consumers?

Focal taxa: 2 freshwater + 1 estuarine consumer

Gar, bass, bowfin and snook dominate
Consumers show marked seasonality

Study system: ecotonal sites at ENP

First and second order oligohaline estuarine creeks
$<1.2 \mathrm{~m}$ depth
< 10 PSU salinity

Hypotheses

During drydown

Post drydown

Prey abundance

Predator abundance
Marsh prey consumption

Diet segregation

Predator condition

Predator abundance
Marsh prey consumption

Diet segregation

Predator condition

Tracking predator-prey abundance

Data collection

- Continuously sampled 5 sites
- Nov 2010 to June 2011
- Electrofishing
- Minnow traps

Statistics

Compared time \& species using GLMs

- Predator abundance
- Prey abundance

$$
4 \text { functional groups }
$$

USGS station SH1

Stomach contents

Data Collection

Pulsed gastric lavage
100\% effective in bass \& snook
(Adams et al. 2009 Hartleb \& Moring 1995)

Statistics

Compared effects of time \& species using Scheirer-Ray-Hare test (Dytham 1999)

- Time partitioned into 4 hydrologic stages
- biomass of freshwater and estuarine prey consumed
- Numerical proportions of each prey functional group

Bass Bowfin Snook

stomachs sampled

Prey Predators
 Diet Fitness gains

Nov. Dec. Jan. Feb. Early Late April May June Mar. Mar.

Prey Predators
 Diet
 Fitness gains

Mar. Mar.

Prey Predators Diet Fitness gains

Prey
 Predators
 Diet Fitness gains

Species, p < . 001
Time, $\mathrm{p}<.001$
Species \times Time, $p=.568$

Species, $\mathrm{p}<.001$
Time, p = . 2915
Species x Time, p=. 965

Prey
 Predators
 Diet
 Fitness gains

Pre drydown
Early drydown Late drydown post drydown

Dish $=10 \mathrm{~cm}$ $0+\sqrt{4}+\sqrt{3}$

Prey
 Predators
 Diet Fitness gains

Pre	Early drydown drydown	Post drydown

Summary of results

During drydown

Prey abundance

Predator abundance

Marsh prey consumption

Diet segregation

Predator condition

Post drydown

Prey abundance

Predator abundance

Marsh prey consumption

Diet segregation

Predator condition

Summary of results

During drydown

Prey abundance

Predator abundance YES Marsh prey
consumption

Diet segregation

Predator condition

Post drydown

Prey abundance
YES

Predator abundance \quad YES
Marsh prey consumption

Diet segregation

Predator condition

Summary of results

During drydown

Prey abundance

Predator abundance YES

Diet segregation

Predator condition

Post drydown

Prey abundance

Predator abundance Marsh prey
consumption

Diet segregation

Predator condition

Summary of results

During Drydown

Post Drydown

Prey Abundance
Predator Abundance
 Marsh prey consumption YES Marsh prey consumption

Diet Segregation

Prey Abundance
Predator Abundance

Diet Segregation
YES

Summary of results

During drydown

Prey abundance

Predator abundance YES

Diet segregation

Predator condition

Post drydown

Prey abundance
Predator abundance YES

Marsh prey consumption

Diet segregation
Predator condition

Implications

Marsh consumers regulate subsidy

Implications

In a series of years with high rainfall

Implications

In a series of dry years

Marsh consumers

Implications: Angler catches, Feb-June

Implications: Angler catches Feb-June

Implications: Angler catches, Feb - June

Everglades: World Class Snook

 FisherySnook fishery maybe enhanced by subsidies
$\approx 18,246$ of anglers target snook at ENP /yr (Osborne 2006)

Generating 4 million dollars per year
(Fedler 2009 \& Ault et al. 2010)
Understanding and conserving snook High quality foraging opportunities important

Moving on to FCE III

Trexler et al. 2005

increased freshwater flow increases marsh fish production

Proportion of subsidy to snook does not change, but the subsidy increases

Snook prey availability

Please Visit Poster \#216

Acknowledgements

- USGS
- RECOVER
- FCE LTER
- FIU
- Rehage Lab
- Aaron Adams
- Craig Layman
- Michael Heithaus
- Amy Narducci
- Dave Rose and the southernmost bass anglers

